シリーズ (CR 企業の米国特許と技術):中巻

欧州ケミカルリサイクル企業 6社の米国特許と技術

欧州熱分解法ケミカルリサイクル企業 6 社の米国特許を調査し、公表情報と合わせて工業プロセスを推定した。そのうち、Plastic Energy、Mura Technology、BlueAlp については特許からプロセスの全容を推定できた。Lyondel1Basell については、特許により、プロセス (CSTR 2 基シリーズ)と熱分解触媒(ゼオライトなど)について新規な情報が得られた。Pryme については、特許より重要な情報が得られたが、特許件数が少なく解析は十分でない。参考として、札幌プラスチックのプロセスを紹介した。

2025年11月

株式会社 旭リサーチセンター

シニアリサーチャー 府川 伊三郎

まとめ

- ◆Quantafuel 特許(特許出願1件)は熱分解油の水素化処理用触媒特許のみで、熱分解反応に関する情報は得られなかった。 (4-5頁)
- ◆Plastic Energy 特許(同6件)より、同社のプロセスの全容を推定できる。ポイントは、コンタクター方式(反応蒸留方式)と装置(同2件)、セミバッチ反応の運転サイクル(廃プラスチックの熱分解炉への連続供給・熱分解―バッチで昇温して反応完結―チャーを乾燥して排出、同2件)、熱分解炉壁面のチャーの掻き出しのための熱分解炉のカウンターへリカル型撹拌機など(同2件)である。同社特許より、熱分解ではチャーの発生抑制、掻き取り、排出が重要なことを認識した。 (6-15 頁)
- ◆Licella 特許(同5件)はバイオマス原料を中心とする超臨界水熱分解技術に関する ものである。一方、Mura Technology 特許(同2件)は、廃プラ原料の超臨界水熱 分解に関するパイロットレベルでの技術内容が詳細に開示され、プロセスの全容を 推定できる。 (16-21 頁)
- ◆BlueAlp 特許(同6件)のうち、基本的な特許3件に共通した「①押出機の後に加熱用熱交換器を設置してポリマーを加熱する、②熱分解炉(分離槽)からポリマー熱分解液を抜き出し、これを外部熱交換器で再加熱して熱分解炉に戻す」技術がポイントである。2024年以降に公表された同社のプロセスフローには、②の外部循環・加熱が付け加わったことが注目される。また。熱分解炉構造や部分凝縮器について、複数特許が出願され、これも重要な技術ポイントである。 (22-28 頁)
- ◆Pryme 特許(同2件)は、2軸押出機により廃プラを 350℃まで急速加熱した後、熱分解炉に供給し、他社よりは高温で熱分解して生産性の高いプロセスを構築しようとしている。特殊固有撹拌機と補助材 CaCO3 を使用して、熱分解炉壁面に発生するチャーを抑制・掻き取りをする特許を出願しているが、高温熱分解時にどの程度有効かわからない。特許件数が少なく、十分なプロセス解明はできていない。(29-34 頁)
- ◆LyondellBasell 特許(同 19 件)の内、①熱分解工業プロセス(同 2 件)については、KIT プロセスではなく、CSTR 2 基シリーズのプロセス(フレッシュ触媒は 2 基

目にフィードすることも推奨)が開示され、工業化プロセスと推定される。②触媒について 10 件出願されており、同社の最新特許には、「熱分解用触媒としては、金属酸化物、ヘテロポリ酸、メソポーラスシリカ、アルミノシリケート(ハロサイトやカオリナイト)、および好ましくはゼオライトが選択される。好ましいゼオライトは合成 Y型ゼオライトと ZSM-5 ゼオライトである。また、廃プラの腐食性の低減および解重合効率向上のためにポリマー溶融物に添加剤を加えることがある。また、触媒毒を低減するために、触媒とともに添加剤が使用される。これら添加剤の好ましいものは、Ca(OH)2、ベントナイトなどのアルミノシリケート、Zr(HPO4)2 とそれらの混合物である。」との注目される記載がある。 (35-44 頁)

◆札幌プラスチックの PVC の事前熱分解法、ロータリーキルンを用いたセミバッチ重合 法、パイロットから本工場へのスケールアップと廃プラ処理能力について記載した。 (45-47 頁)

目 次

はじめに	1
用語•略語	2
1. Quantafuel(デンマーク)	4
2. Plastic Energy(イギリス)	6
3. Licella(オーストラリア)と Mura Technology(イギリス)	16
4. BlueAlp(オランダ)	. 22
5. Pryme(オランダ)	. 29
6. LyondellBasell(欧州と米国)	35
(参考)札幌プラスチック	45
おわりに	48
謝辞	49
参考文献	. 49

〔上巻〕 ケミカルリサイクル企業主要 12 社の米国特許技術と最新動向

- 1. 混合廃プラの熱分解法 CR の事業化状況
 - 1.1 世界の熱分解油工場の混合廃プラ(PE/PP/PS)処理能力
 - 1.2 日本の混合廃プラと廃タイヤの CR 技術の事業化と開発
- 2. 混合廃プラの熱分解法 CR プロセスの概要と課題
 - 2.1 混合廃プラの熱分解法 CR プロセスの概要
 - 2.2 混合廃プラの熱分解法 CR プロセスの技術課題
- 3. 熱分解油メーカー主要 12 社の公表資料によるプロセスの特徴
- 4. 熱分解油メーカー主要 12 社の米国特許と公開情報の総合的解析
 - 4.1 熱分解油メーカー主要 12 社の米国特許の検索結果
 - 4.2 熱分解油メーカー主要 12 社の固有要素技術
 - 4.3 熱分解法 CR のスケールアップが難しい理由と対策

〔下巻〕 米国などケミカルリサイクル企業 6 社の米国特許と技術

- 1. OMV(オーストリア)
- 2. ExxonMobil(米国・テキサス州 Baytown)
- 3. Honeywell UOP (米国・イリノイ州 Chicago)
- 4. Alterra Energy (米国・オハイオ州 Akron)
- 5. Nexus Circular (米国・ジョージア州 Atlanta)
- 6. New Hope Energy/Lummus(米国・テキサス州 Tyler)

(参考) 環境エネルギー

おわりに(熱分解法 CR の将来)

はじめに

(1)本リポート(シリーズ(CR企業の米国特許技術)の中巻)について

過去5年間、ケミカルリサイクル (CR) の事業化状況をウォッチ ¹してきたが、混合廃プラ (PE/PP/PS) の熱分解法 (油化法、欧米ではAdvanced Recycling ということが多い) は、最も注目される CR である。本リポートの上巻では、熱分解法 CR 工場 (熱分解油工場) の建設状況と熱分解 CR 主要 12 社 (熱分解油メーカー主要 12 社) の固有要素技術とスケールアップ技術について概説した。

本リポートの中巻では、主要 12 社のうちの、欧州 6 社の Quantafuel (デンマーク)、Plastic Energy (イギリス)、Licella (オーストラリア) と Mura Technology (イギリス)²、BlueAlp (オランダ)、Pryme (オランダ)、LyondellBasell (欧州と米国)を取り上げた。また、参考に先行技術である札幌プラスチック (2001~2011年稼働) の技術内容 ³を紹介した。

欧州 6 社のうち Plastic Energy の TAC 法 (無酸素条件下の熱分解法) は現在のところ世界で最も多く工業化されているプロセスであり、LyondellBasell は触媒使用の新技術を開発して工場建設中であり、Pryme と BlueAlp はプロセスのスケールアップが可能なことを PR しているので、それらの技術内容を特許から推定することは興味のあるところである。

なお、各社の内容は、次のような共通項目で構成した。すなわち、①概要、②公表 資料によるプロセスの特徴、③特許検索結果(特許一覧表)と注目される特許プロセス (重要特許をピックアップして、ポイントやプロセスフロー図(装置図)の説明)、④ コメント(ポイントと筆者意見)である。

(2)特許の検索と整理の仕方について

特許は、検索しやすく明細書の著作権問題が少ない米国特許(USP)に絞り、一部国

.

¹ 参考文献(1)~(6)参照。

² Licella は Mura Technology に超臨界水熱分解技術をライセンスした。

³ 参考文献(7)参照。

際特許出願(PCT)で補強した。

各社の米国特許検索結果は、次の基準でまとめた。

- ①出願番号が同一の公開特許と登録特許は勿論、それらの分割特許、継続特許、一部継続特許を含めてまとめて1件でカウントして、特許一覧表を作成した。米国特許は 分割特許、継続特許、一部継続特許が多い。
- ②「最も早い出願日」を出願日とした。特許明細書に記載のある米国の Provisional filing date (仮出願日)、優先権主張日、出願日の中で最も早いものを表に記載した。各社の特許はそれぞれ、「最も早い出願日」順にナンバリング (No.1~) した。
- ③発明者は原則「姓」だけを記載し、筆頭発明者は赤字とした。発明者の記載順は、原則特許明細書の記載に従った。ただし、LyondellBasell、ExxonMobil(下巻)など特許件数が多いところについては、代表的な発明者ベースの記載順にした。これは、代表的発明者がどの特許の発明者になっているかを見分けやすくするためである。

用語•略語

- ・メカニカルリサイクル(Mechanical Recycling(略:MR)):粉砕、洗浄、造粒により機械的に廃プラをリサイクルする方法。マテリアルリサイクルと同じ意味。
- ・ケミカルリサイクル (Chemical Recycling (略: CR)):ポリマーを化学反応で分解して、モノマーや化学品にするリサイクル方法。欧米ではAdvanced Recycling ということが多い。CR の手法としては、解重合法、熱分解法(油化法)、ガス化法、コークス炉化学原料化法、高炉還元剤法などがある。
- ・廃プラ(廃プラスチック):使用済みプラスチック、プラスチック廃棄物と同じ意味。
- ・CR プラントの設備能力:一般には廃プラの処理能力で表す。また、熱分解油(オイル)の生産能力で表す場合もある。
- ・熱分解炉 (Pyrolysis furnace):熱分解リアクター (Pyrolysis reactor)、リアクター (Reactor) と同じ意味である。
- ・ポリマー熱分解液:熱分解炉中にあるポリマーとポリマー分解物の混合物。
- ・熱分解物ベーパー(vapor):熱分解炉で廃プラが分解されて排出されるガスのこと。

- ・熱分解ガス:熱分解物ベーパーを室温に冷却しても気体のもの(メタン、エタンな ど)。
- ・チャー:熱分解で生成する炭素系副産物(カーボンブラック、コーク、炭素など)。
- ・コンタクター、還流塔、部分凝縮塔 (Partial condenser) : いずれも低沸点成分 (製品成分) と高沸点成分 (熱分解炉に戻し再分解させる) を分ける設備を指す。
- ・ロータリーキルン (Rotary Kiln): 供給装置を使って原料を炉内に供給し、撹拌さ せながら原料を均一に熱処理する円筒回転加熱炉である。
- ・アップグレーディング (Upgrading): FCC や水素化分解により、熱分解油の重質成 分を軽質化して、ナフサなどの軽質留分にすること。
- ・FCC (流動接触分解): 重質油原料から、ガソリン、ガソリン原料、軽油などを製造 する方法・設備。JOGMEC(独立行政法人エネルギー・金属鉱物資源機構)によれば、 「反応温度は 430~550℃、圧力は移動層式で約 2kg/cm²、流動層式で 0.7~ 1. 1kg/cm²程度である。触媒再生温度は550~660℃である。最近ではゼオライト触媒 が主流であるが、シリカアルミナ触媒も使用される。反応生成物の収率の一例は原 料油に対して大体ガソリン 30~60vo1%、B-B 留分(C4 留分) 5~10vo1%、C3 以下 のガス 5~10wt%、分解軽油 20~50vo1%、コークス 5~10wt%程度である」 4。
- ・水素化分解:「水素化分解とは、炭化水素を高温・高圧下、水素気流の中で触媒を用 いて分解し、より軽質の炭化水素に転化させることである」5
- プラスチックの略号

PE:ポリエチレン、PP:ポリプロピレン、PS:ポリスチレン

混合廃プラ (PE/PP/PS): PE、PP、PS からなる混合廃プラのことで、熱分解に適する。

PO:ポリオレフィン (PE、PP などの総称)、PVC:ポリ塩化ビニル

PET: ポリエチレンテレフタレート、PA: ポリアミド (ナイロン)

⁴ 出所: JOGMEC 資料(https://oilgas-info.jogmec.go.jp/termlist/1001027/1001092.html)に基づき作成。

⁵ 出所: JOGMEC 資料(https://oilgas-info.jogmec.go.jp/termlist/1000971/1000980.html)に基づき作成。

1. Quantafuel(デンマーク)

1.1 概要

BASF の支援を得て、デンマークの Skive に工場を建設し、2020 年頃に稼働した。それ以来、BASF に熱分解油を供給している。2022 年 3 月 28 日発表の概念実証では、2 ラインで廃プラ処理能力は60トン/日(熱分解油生産能力1.6万トン/年)、稼働率90%、熱分解油の全体収率は68%であったことを発表している。

2024年2月8日に、Viridor(イギリスのリサイクラー)は Quantafuel の全所有権を取得したと発表した ⁶。

1.2 公表資料によるプロセスの特徴

表 1 Quantafuel の公表資料によるプロセスの特徴

			主たる提			熱分解条件		
企業名	プラント 所在地	年間処理 能力	携石油化 学企業ほ か	原料廃プラ	触媒	熱分解温度·圧力、 特徴	熱分解 油の処理	反応成績
Quantafuel	デンマー ク・Skive	1.6万トン	BASF、 Viridor (株主)	LDPE、 HDPE、 PP、PS	なし	380~460°C(好ま しくは、420°C)、 1bar、 塩素とイオウ除去剤 (無機物)の添加。	Mn/Al2	・原料廃プラ100%に対して、軽質油16%、ディーゼル56%、重質油8wt%、灰分(70%カーボン)10wt%。 ・概念実証:稼働率は90%、熱分解油の全体収率は68%。

出所:公表資料より旭リサーチセンター作成。

1.3 特許検索結果と注目される特許プロセス

Quantafuel 出願の USP は 1 件しか見つかっていない。明細書中の熱分解最適条件は温度 420 $^{\circ}$ $^{\circ}$

3

⁶ https://www.viridor.co.uk/news-and-insights/viridor-takes-full-ownership-of-quantafuel-as/

表 2 Quantafuel の米国特許(USP)検索結果

	会社名 Quantafuel	出願人 Qu	ıantafuel	特許件数 1件		
番号	特許番号	最も早い 出願日 公開日		発明者	特許の名称(略)	ポイント
No.1	公開 US 2021/0269721 (PCT/EP2019/068143)	2018.7.6	2021.9.2		廃プラからの炭化 水素の製造	固有の触媒(例:Cu- Mn/Al2O3)による熱分解 油中の不飽和結合の水素 化。

注:赤字は筆頭発明者、E.Fareid、L.E.Fareidでも検索。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

1.4 コメント

特許は熱分解油の水素化処理用触媒特許1件のみで、熱分解反応に関する詳細な情報 は得られなかった。

2. Plastic Energy(イギリス)

2.1 概要

Plastic Energy は 2011 年に設立されたロンドンに本社がある会社である。当初、独自で熱分解法工場をスペインに 2 ヵ所、Seville (2014 年稼働) と Almeria (2017 年稼働) に建設し、現在総生産能力は 1 万トン/年である。その後、石油化学企業と提携して、フランス (2 ヵ所)、オランダに工場を建設してきた。

熱分解技術は「TAC」(Thermal Anaerobic Conversion:無酸素条件下の熱分解)と呼び、製品の熱分解油は「TACOIL」(Thermal Anaerobic Conversion 0il)と呼んでいる。技術はイギリスの Cynar からライセンスを受けたものである (Cynar プロセス)。既に、他社と提携して、複数の工場建設やライセンスをしている(上巻5頁の表2と6頁の表3参照)。このため、合計の処理能力は6.3万トン/年に上る。

2.2 公表資料によるプロセスの特徴

表 3 Plastic Energy の公表資料によるプロセスの特徴

企業名		年間				熱分解条件	-	
プロセス 名)	1776		主たる提携石油 化学企業	原料廃プラ	触媒	連続/バッチ	特徴	反応成績
Plastic Energy (TAC)	スペイン、 フランス、 オランダ	計6.3万 トン	Sabic、 ExxonMobil (フランス)、 TotalEnergies	PE、PP、PS ラミネートも 可能。	なし	セミバッチ	反応蒸留 (コンタク ター使用)	 ・1トンの廃プラから850リットルの熱分解油。 ・収率:72~75%の TACOIL (熱分解油) は石化産業に販売、18%のsyngasは電力用に使用、約8~10%のチャーは建設用に販売。

出所:公表資料より旭リサーチセンター作成。

図1のプロセス模式図が同社のウェブサイトに記載されている。コンタクターを使用していることが特徴である。熱分解炉で生成したベーパーをコンタクターで冷却し、ある沸点以下のものは凝縮器に送って熱分解油として回収し、一方ある沸点以上の分子量(炭素数)の大きいものは熱分解炉に直接戻すコンタクター方式である⁷。特許明細書

⁷ 出所:https://plasticenergy.com/technology/

の図 (9 頁の図 2) では、熱分解炉の上にコンタクターが直接乗っている形であるが、図 1 では熱分解炉の隣にコンタクターがある形になっている。

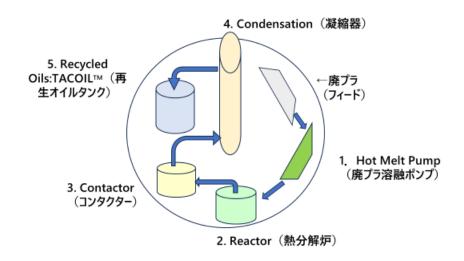


図 1 Plastic Energy の熱分解プロセスの模式図

出所:https://plasticenergy.com/technology/の図を基に旭化成が編成。

同社はまた、熱分解プロセスはセミバッチ 8 で、熱分解で発生するガスを syngas(合成ガス: C0 と H_2 の混合ガス)と記載している 9 。熱分解ベーパーは連続的に反応系から取り出されるが、チャーなどの固体は熱分解炉にたまるので、定期的に熱分解反応を止めてそれらを取り出すのでセミバッチと称しているのであろう。

7

^{**} https://www.basf.com/jp/ja/who-we-are/sustainability/we-drive-sustainable-solutions/circular-economy/mass-balance-approach/chemcycling/dialog-forum-chemical-recycling.html 上記 URL 内の「Download of Presentations」の Presentation by Carlos Monreal, Plastic Energy: Practical examples-Pyrolysis plants。

⁹ 参照 URL は前脚注(8)と同じ。脱気して、無酸素状態で熱分解反応をするが、一部混入した酸素や廃プラ分子中の酸素と生成メタンガスが反応して、合成ガスができるものと推定される。メタンの水蒸気改質の可能性もある。

2.3 特許検索結果と注目される特許プロセス

表 4 Plastic Energy の米国特許(USP)検索結果

会社名	子 Plastic Energy	出願人	Plastic Ene	rgy(No.1はA	Assignee)	特許件数 6件
番号	特許番号	最も早い 出願日	公開日、 登録日	発明者	特許の名称 (略)	ポイント
No.1	US 2012/0261247 US 10,131,847 (WO 2011/077419)	2009.12.22	公開日 2012.10.18 登録日 2018.11.20	McNamara、 Murray	廃プラから燃料へ の転換	熱分解プロセスの全体システム:押出機、熱分解炉、コンタクター、生成物の蒸留、チャー抜き出し。コンタクターを利用した反応蒸留により、有用成分(ナフサ、ディーゼルなど)を選択的に取り出す。
No.2	US 10,208,253 (WO 2016/030460)	2014.8.28	登録日 2019.2.19	McNamara、 Murray	熱分解炉システム	撹拌機付き熱分解炉、コンタクター、チャー抜き出し口からなる熱分解炉システムとそれらの詳細構造。
No.3	US 11,708,534 (WO 2020/065316)	2018.9.26	登録日 2023.7.25	McNamara、 Dunphy、 Strivens、 Yabrudy	熱分解炉アセンブリー	熱分解炉壁面に固着するチャーをより効果的 に掻き取るためにカウンターヘリカル型ブレードに 特別の摩耗(ウェア)ブレードを取り付けたも の。
No.4	US 2023/0020918	2019.12.20	公開日 2023.1.19	McNamara、 Dunphy、 Strivens、 Yabrudy	熱分解法とそのシステム	押出機と熱分解炉の連結部分のパイプやバル ブなどを加熱し、連結部内の溶融廃プラの温 度を保持するための装置。図面あり。
No.5	US 2024/0384173	2021.8.9	公開日 2024.11.21	McNamara、 Strivens、 Yabrudy、 Silva、 Dunphy	廃プラ熱分解用 システムと装置	No.1特許の改良特許で、詳細な多点温度、 撹拌動力の制御法を規定。セミバッチ重合で 連続からバッチ段階に移行して昇温し、チャー を乾燥して排出する。
No.6	US 2025/0099878	2022.1.26	公開日 2025.3.27	McNamara、 Strivens、 Yabrudy	熱分解油から異 物を除去する方 法	循環ラインとブリードオフラインからなる異物除 去システム。デカンテーションなどで分離。詳細 図あり。

注:赤字は筆頭発明者。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

ライセンス元の Cynar の名で出願人検索して、No.1 の特許が見いだされた。現在は、Plastic Energy がこの特許の Assignee (譲受人) になっている。そのほかに、Plastic Energy で No.2~6 の 5 件が検索された。主たる発明者は No.1~6 共通である。Cynar の技術者が Plastic Energy に移籍したものと推定される。

(1)No.1特許(US 10,131,847)

図2に全体フロー図と主要機器の操作温度を示す。ポイントは、熱分解炉の上にコンタクターが設置されているのが特徴である。廃プラ供給用押出機1基について熱分解炉2基、熱分解炉4基について蒸留系は1系列となっており、製品はLight oil(軽質油)、Kerosene(灯油)、Diesel(ディーゼル油)であり、ガスは燃料用にファーネス(図2の72経由)に送られる。熱分解炉中の液体レベルの検知と液体部分の密度測定を放射線で行う。チャーはたまった段階で熱分解炉より取り出す(図2の9)。

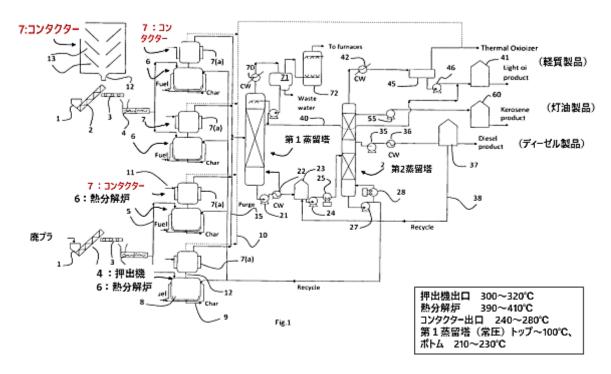


図 2 Plastic Energy 特許記載の熱分解油製造フロー

出所: US 10,131,847のFig. 1。機器名と□内は明細書データに基づいて旭リサーチセンターが翻訳。

図3に運転実績が示されている。図の一番下のPyrolysis Agitation Load (撹拌動力) の経時変化のグラフにおいて、中央あたりの 15 時 12 分からトルクが上がっている。チャーが乾燥したためで、その後チャーの取り出しが行われる。

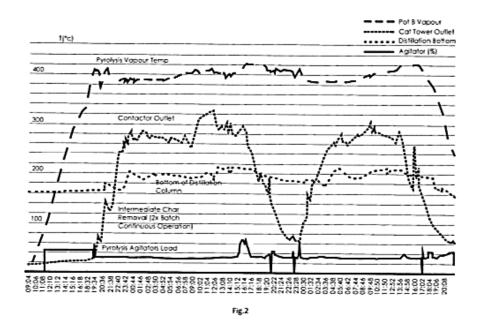


図 3 Plastic Energy 特許記載の運転データ(各測定場所における温度の経時変化)

出所:US 10,131,847のFig.2。

(2)No.2特許(US 10,208,253)

熱分解炉の撹拌器とコンタクターを中心とする装置特許である。撹拌装置の一例は、図4のようなカウンターへリカル型と Auger ブレードのセットになっている。カウンターへリカル型撹拌翼は上下撹拌効果とともに、そのブレードは熱分解炉の下部壁面と狭いクリアランスに設定し、壁面に付着したチャーを掻き取る働きがある。また、廃プラの供給口にある Auger ブレードはカウンターへリカル型撹拌翼とは回転方向が逆で、シャフト周辺の撹拌効果がある。また Auger ブレードを回転させて、たまったチャーを熱分解炉から排出することができる。また、図5はコンタクター装置の一例である。

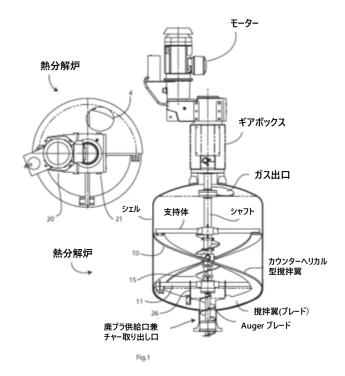


図 4 Plastic Energy 特許記載の熱分解炉の構造

出所: US 10,208,253のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。

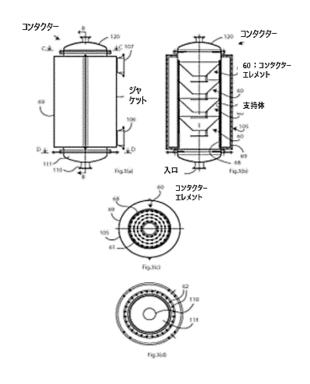
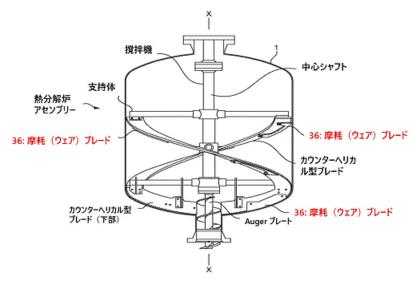


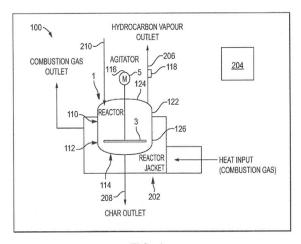
図 5 Plastic Energy 特許記載のコンタクターの構造

出所: US 10,208,253のFig.3。図の機器名は旭リサーチセンターが日本語に翻訳。

(3)No.3特許(US 11,708,534)

この特許は図6に示すように、撹拌羽根に摩耗性のブレードを取り付け、壁面付着物の掻き取り効果を向上させる装置に関するものである。撹拌羽根や壁面を傷めないように摩耗性のブレードを使用する。




図 6 Plastic Energy 特許記載の熱分解炉撹拌機の構造

出所: US 11,708,534のFig.3。図の機器名は旭リサーチセンターが日本語に翻訳。

(4)No.5特許(US 2024/0384173)

No. 1 特許の改良特許である。図 7 の FIG.4 に示される熱分解炉システムで、具体的には FIG.1 の撹拌機付き熱分解炉を用い、撹拌動力の計測や多点の温度計測を用いて、セミバッチ熱分解反応をコントロールする。

FIG.2 はチャーをドライアップした時点での撹拌動力の上昇を示し、FIG.3 はセミバッチ反応における多点温度の経時変化を示す。FIG.3 の Reactor Feeding 期間には、熱分解炉に廃プラが連続的に供給され、Reactor Peaking 期間では廃プラ供給を止め、バッチで昇温して熱分解を完結し、次いで Char Dried の期間で残渣のチャーを乾燥し、排出する。このセミバッチの運転サイクル(Reactor Empty—Reactor Feeding—Reactor Peaking—Char Dried)は、札幌プラスチックの熱分解炉の運転サイクル(46頁)とほとんど一緒である。

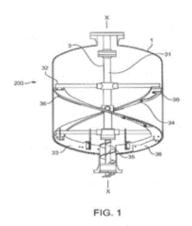


FIG. 4

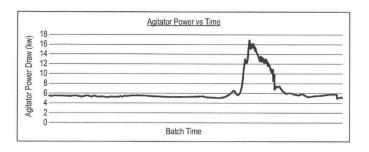


FIG. 2

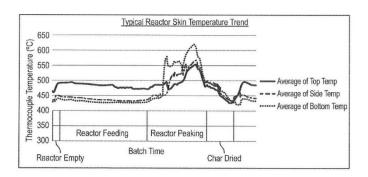


FIG. 3

図 7 Plastic Energy 特許記載の熱分解炉システム(FIG.4)、撹拌機付き熱分解炉(FIG.1)、 撹拌動力の経時変化(FIG.2)、多点温度の経時変化(FIG.3)

出所:US 2024/0384173のFIG.1~4。

(5)No.6特許(US 2025/0099878):熱分解油の精製法

2段のデカンターを使って熱分解油を精製する方法である(図8)。急冷ベッセル (10) で凝縮した熱分解油を、第1デカンテーションベッセル (21) で上層液に分離し、フィルター (57) を通し、さらに水洗浄カラム (80) で洗浄して精製された熱分解油を得る。また、第1デカンテーションベッセル (21) の上層液の一部は急冷ベッセル (10) に循環される (40)。第1デカンテーションベッセル (21) の下層は第2デカンテーションベッセル (71) に送られる。水洗浄カラム (80) から出た洗浄水も第2デカンテーションベッセル (71) に送られた後、異物と排水に分離する。

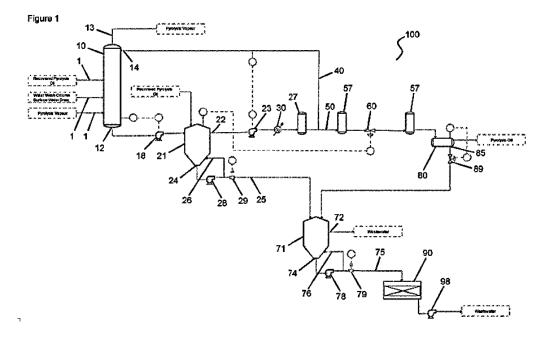


図 8 Plastic Energy 特許記載のデカンテーションと循環による精製法

出所:US 2025/0099878のFigure 1

2.4 コメント

同社のコンタクターを使用する方法(反応蒸留)と装置については、No.1とNo.2特 許から詳細がよくわかる。

同社のセミバッチ熱分解反応の運転サイクル (廃プラ連続供給による熱分解―バッチで昇温して反応完結―チャーを乾燥して排出) については、No.1 特許とその改良特

許である No. 5 特許によって詳細が明らかになった。これは先行技術であった札幌プラスチックの方式に類似している。

同社の熱分解炉壁面のチャーの掻き出しのための(ブレード付き)カウンターへリカル型撹拌翼の特許が2件あり、チャーの生成抑制が重要なことを認識した。

全体として、同社のプロセスと固有技術が明らかになったと考えられる。

同社はこれら特許技術を駆使して、高い熱分解率を達成し、チャーの生成抑制と取り出しに成功し、安定生産を実現しているものと推定される。

3. Licella(オーストラリア)とMura Technology(イギリス)

3.1 概要

Licella は超臨界水熱分解技術(「Cat-HTR(Catalytic Hydrothermal Reactor)」)を開発し、Mura Technology にライセンスした。Mura Technology は、ANZ 地域(オーストラリア・ニュージーランド地域)を除く世界のライセンステリトリーを取得し、Licella は ANZ 地域の権利を留保した。

Mura Technology はライセンス技術をリファインし、超臨界水熱分解技術(「HydroPRS: Hydro Plastic Recycling Solution」と命名)を開発した。2023 年、イギリスの Teesside に自社工場を完成させ、稼働を開始した。同社は自社生産だけでなく、ENEOS・三菱ケミカル共同体や LG ケミカルにライセンスした。一方、Licella は他社と共同して、オーストラリアの Sydney に工場を建設する計画である。

3.2 公表資料によるプロセスの特徴

技術は、触媒にアルカリ(推定)を使用した高温高圧の水溶媒の超臨界水熱分解プロセスである。ナフサ・軽質油・重質油・ワックスの4種類の製品が製造される。通常の熱分解より収率が高いといわれる。

表 5 Mura Technology の公表資料によるプロセスの特徴

	- 2-5.1	年間 処理 能力	主たる提 携石化 企業ほか	原料廃プラ		ļ	熱分解条	· 件		
	プラント 所在地				触媒	熱分解温度と 圧力、 連続/バッチ	熱分解炉形状	\$1±4±45€	精製・アップ グレード技術	
Mura Technology (HydroPRS)	イギリス・ Teesside	2万トン	Dowほか	PE、PP、PS、 PET フレキシブルな 多層フィルムも 処理可能	アルカリ	超臨界水条件 (374°C、 22MPa)、 バッチ(反応時 間30分)			提携先の	LCA計算ベース:プロセスガス11%、ナフ サ26%、蒸留ガスオイル25%、重質ガス オイル24%、重質ワックス残渣13% (2023年3月2日発表)

出所:公表資料より旭リサーチセンター作成。

図 9 に、Licella の「Cat-HTR」のプロセス模式図を示す。熱分解(図中のステップ ④)はバッチ反応である。

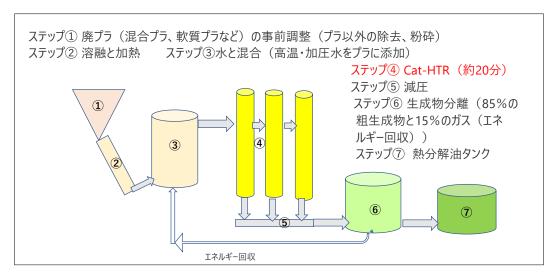


図 9 Licella Cat-HTR プロセス

出所:Licellaのウェブサイトの図を基に旭リサーチセンター編成。

3.3 特許検索結果と注目される特許プロセス

Licella がバイオマス、亜炭、有機物質の超臨界水熱分解の特許(No. $1\sim5$)を出願し、その後、Mura Technology が廃プラの超臨界水熱分解の詳細な特許(No. $6\sim7$)を出願した(表 6)。このうち、工業化プロセスを詳細に開示している No. 6 特許が最も重要である。No. 7 は No. 6 の改良特許である。

表 6 Licella と Mura Technology の米国特許(USP)検索結果

会社名 出願力	出願人 Licella、Licella Fibre Fuels(Licella Fib.と略す)、Ignite Energy Resources(Igniteと略す)、Mura Technology。 特許件数 7件										
番号		特許番号	関係PCT(WO)	最も早い出 願日	公開日、登録日	出願人	発明者	特許の名称(略)	ポイント		
No.1	US	8,579,996	WO 2009/015409	2007.7.27	登録2013.11.12	Ignite、Licella	Humphreys	有機物質を製品に転化さ せるプロセスと装置	亜炭、セルロ−ス、リグニンなどを酸化剤存在下で水(亜)臨界条件(350~420°C、220bar以上)で分解する。		
No.2	US	2011/0209387	PCT/AU2009/001312	2008.10.1	公開2011.9.1	Licella	Humphreys	バイオオイルの製造法	超臨界条件でバイオマスや石炭を分解する方法。		
No. 3		US 2013/0192123	PCT/AU2011/000404	2010.4.7	公開2013.8.1	Licella、Ignite、 Licella Fib.	Maschmeyer、 Humphreys	バイオ燃料の製造法	亜炭、セルロ−ス、リグニンなどを触媒存在 下で水(亜)臨界状件(275~375°C、		
		US 9,944,858	WO 2011/123897	2010.4.7	登録2018.4.17	Licella、Ignite、 Licella Fib.	Maschmeyer、 Humphreys	バイオ燃料の製造法	150〜275bar)で分解する。触媒 NaOH、KOH、Na2CO3他多数。		
No.4	US	10,100,258	WO 2012/000033	2010.7.1	登録2018.10.16	Ignite、Licella、 Licella Fib.	Humphreys、Klatt、 Bennet	Ballistic Heating Process	超臨界条件でパイオマスや石炭を分解す る方法。		
		US 2016/0114307	PCT/AU2014/000601	2013.6.11	公開2016.4.28	Licella	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法			
		US 10,427,132	PCT/AU2014/000601 WO 2014/197928	2013.6.11	登録2019.10.1	Licella	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法	有機物質、溶媒(水)、無機の固体		
		US 2020/0001268	PCT/AU2014/000601	2013.6.11	公開2020.1.2	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法	(例えば10%以下)を水超臨界(亜臨界)条件で分解し、その後減圧にして水と		
		US 10,751,690	PCT/AU2014/000601	2013.6.11	登録2020.8.25	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法	バイオ燃料を分離する(連続)プロセス。 無機物質としては、カーボン系(亜炭な ど)やフライアッシュ、炭酸カルシウム、クレ イなどが含まれる。触媒にはNaOH、		
No.5		US 2022/0250031	多数の記載	2013.6.11	公開2022.8.11	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法			
		US 11,826,722	(US 2022/0250031)	2013.6.11	登録2023.11.28	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法	KOH、Na2CO3などが含まれる。この系は ファウリングが少なく、プロセスの連続化が		
	US	2021/0146334	多数の記載	2013.6.11	公開2021.5.20	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法	可能である。		
	US	2024/0042414	多数の記載	2013.6.11	公開2024.2.8	Licella Licella Fib. Ignite	Downie, Humphreys, Maschmeyer, Rowlands	バイオリファイニング方法			
		US 2022/0325185	PCT/AU2017/000278	2016.12.14	公開2022.10.13	Mura Technology	Humphreys, Rowlands	バイオ燃料製造のための 方法と装置	超臨界水熱分解法の全プロセスについて、 廃プラフィード用押出機、高温水との混		
No.6		US 2020/0071619	PCT/AU2017/000278	2016.12.14	公開2020.3.5	Mura Technology	Humphreys, Rowlands	バイオ燃料製造のための 方法と装置	合、熱分解炉、減圧による熱分解ベーパー と温水の分離、温水のリサイクルが記載されている。添加無機物、触媒についても記		
		US 11,339,330	WO 2018/107204	2016.12.14	登録2022.5.24	Mura Technology	Humphreys, Rowlands	バイオ燃料製造のための 方法と装置	載。		
	US	2022/0380682	PCT/IB2020/059231	2019.10.4	公開2022.12.1	Mura		ポリマーを製品にするため	No.6の改良特許。超臨界水熱分解における		
No.7	US	12,286,592		2019.10.4	登録2025.4.29	Technology	Daley, Roelanda	のプロセスと装置	フラッシュタンクなどに残存する固体残渣の取り 出し処理方法ほか追加。		

注:黄色地は登録特許。

注:赤字は筆頭発明者。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

(1)No.6特許(US 11,339,330)

図 10 (全体のプロセスフロー) の簡単な説明:廃プラペレットは、計量して押出機に供給する。押出機出口で廃プラのメルトポリマーと超臨界水 (SCW) を混合機で混合し、天然ガス燃焼による間接加熱器で加熱した後、熱分解炉に供給する。熱分解炉にはトレースヒーターが巻いてある。バッチで熱分解後、降圧バルブを開き高温高圧の熱分解油/水の混合物をフラッシュタンクに導入する。フラッシュタンクでガス化したガスはフレアーで燃焼し、液体成分は、遠心分離機にかけて、熱分解油製品と水に分離する。

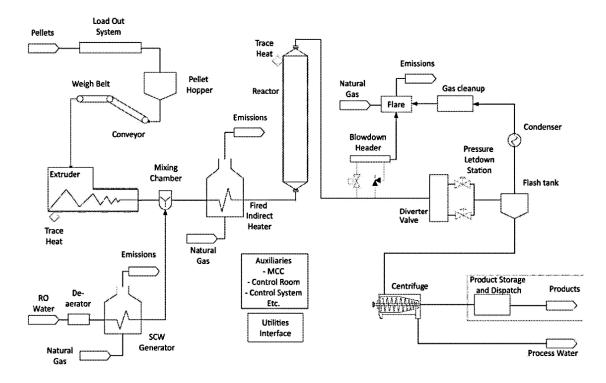


図 10 Mura Technology 特許記載の超臨界水熱分解プロセスの全体フロー

出所:US 11,339,330のFig.1。

図 11 の押出機には、PVC の熱分解で発生する HC1 (塩化水素) のベントがついている。ベントから排出された HC1 はスクラバーで水に吸収される。

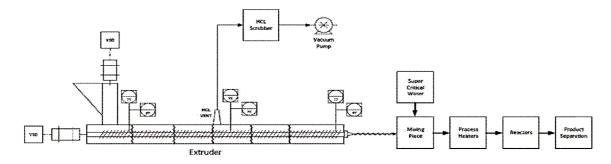


図 11 Mura Technology 特許記載の超臨界水熱分解プロセスの押出機周辺部分

出所:US 11,339,330のFig.2。

図 12 (A) に示すリアクター (熱分解炉) は、直径 300 mm (半径 0.15m)、高さ 14,000 mm (14m) で、図 12 (B) に示すように 3 本使用される。リアクターは管型 (円

筒型)と仮定して、3 本合計の体積を計算すると、 $3.14\times0.15\times0.15\times14\times3 = 3m^3$ になる。また、図 12 (**B**) の 3 本のリアクター間の配管を見ると、熱分解時は反応物が 3 本のリアクターを循環しているものと推定される。

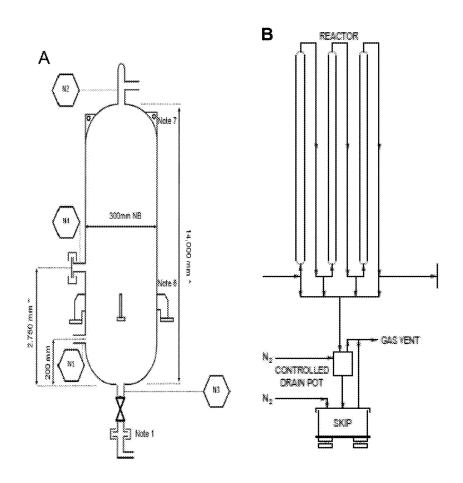


図 12 Mura Technology 特許記載の超臨界水熱分解プロセスのリアクター部分

出所:US 11,339,330のFig.3。

筆者の私見で明細書から最適熱分解条件を推定すると、熱分解温度は 440~450℃、 圧力は 280~300bar、スラリー濃度(廃プラ/水溶液)14~17%で、pH6~11、熱分解 の保持時間(バッチ反応)は 20~30 分(Mura Technology は 30 分と公表している) である。

このデータを基に、管型リアクターの廃プラ処理能力を推定した。 $3 \, \mathrm{m}^3$ の管型リアクターで、熱分解時間を 30 分、熱分解時のポリマーのスラリー濃度を 17%、1 バッチの所要時間を $80\sim120$ 分と仮定すると、廃プラ処理能力は $3.0 \, \mathrm{m}^3 \times 0.17$ トン/ $\mathrm{m}^3 \times 24$ 時

間/1.3~2 時間=6.1~9.4 トン/日、年間の廃プラ処理量は、330 日稼働とすると約2,000~3,000 トン/年となる。パイロット規模である。

(2)No.7特許(US 12,286,592)

No. 7 特許は No. 6 特許の改良特許であり、フラッシュタンクで残渣を除去する方法と装置が付加されている。残渣はチャーなどと推定される。

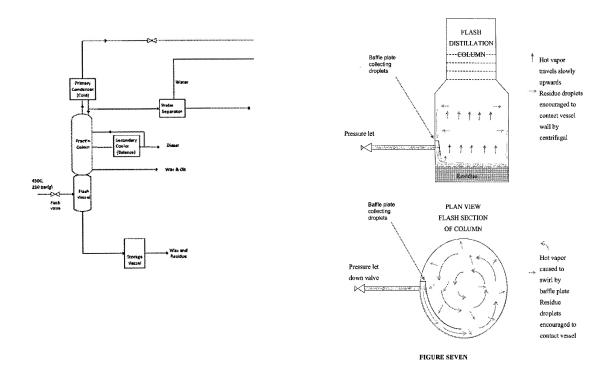


図 13 Mura Technology 特許記載のフラッシュタンクに残存する固体残渣の取り出し方法

出所:US 12,286,592。

3.4 コメント

Licella の公表資料(図 9)に対応する内容の Mura Technology 特許(No. 6 と No. 7 特許)が 2 件ある。この 2 つの特許は、詳細なパイロットレベルの技術内容を開示して おり、同社の工場のベースと考えられ大変重要である。

4. BlueAlp(オランダ)

4.1 概要

BlueAlp のウェブサイト 10 によれば、2014 年よりスイスのパイロット(3,000 トン/年)で経験を積み、2020 年に Renasci & Den Hartog とともに、最初の商業プラントのプロトタイプ(処理能力 1.7 万トン/年)を立ち上げた。工場はベルギー・0stend にあり、Renasci の旗艦工場と同じ工場である。

2022 年 10 月に、Shell は BlueAlp と提携契約を締結し、BlueAlp の 21.25%の株式を取得した。また、BlueAlp は 2024 年 5 月に、イタリアの廃棄物処理企業の Recupero Etico Sostenible (RES) に技術ライセンスをした。現在、RES は 2.0 万トン/年の工場を建設中である。

4.2 公表資料によるプロセスの特徴

表 7 BlueAlp の公表資料によるプロセスの特徴

			提携石			熱分解条件	ŧ	
企業名	ブラント 年間処理 ******		原料廃プラ	触媒	加熱・分解方法、 連続/バッチ	特徴	精製・アップグレーディング	
BlueAlp	ベルギー・ Ostend	2.5万トン	Shell	PVC使用可		slow-cracking、 gradual heating、 連続プロセス。		ShellのMoerdijk製油所で精製。 精製品はShellのMoerdijkと Rhinelandのクラッカーに供給。

出所:公表資料より旭リサーチセンター作成。

BlueAlp によれば、同社技術が既存技術と異なるキーポイントは、①熱分解しすぎることがない(slow-cracking/gradual heating(それぞれのプラスチックを最適温度で分解))、②連続プロセス、③短期間に低コストでスケールアップ可能(伝熱の制約がないため、単一反応器トレーンを 2.45 万トン/年から 7 万トン/年までスケールアップ可能)、④低エネルギー消費、⑤高品質オイル、⑥どんな種類の廃プラも使用可能、⑦触媒を使用しない事実上のセルフクリーニングプロセス、である。

https://www.bluealp.nl/ https://www.bluealp.nl/technology/

同社ウェブサイトのプロセス模式図(図 14)では、押出機の後に加熱用熱交換器が接続していること、チャーの抜き出しを明示していることが特徴である。

なお、最近熱分解炉中のポリマー熱分解液の循環と循環液の熱交換器 (Reactor Heat Exchanger) による加熱が書き加えられたことは注目される。

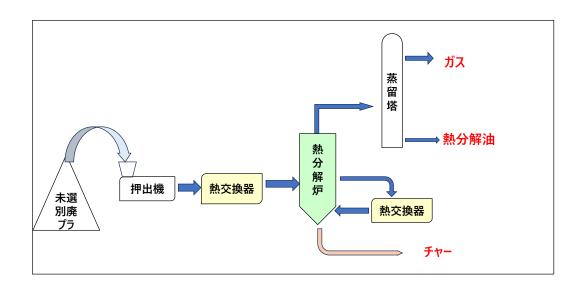
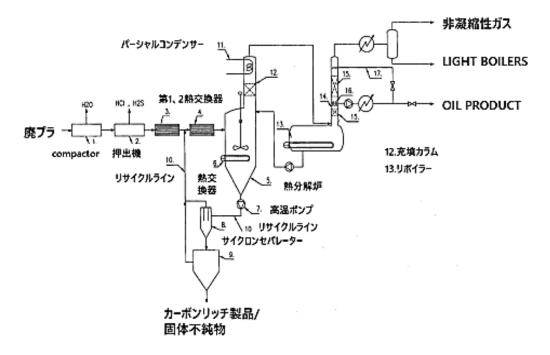


図 14 BlueAlp の熱分解プロセスフロー

出所:BlueAlpのウェブサイトの図を基に、旭リサーチセンターが編集。

4.3 特許検索結果と注目される特許プロセス

表 8 BlueAlp の米国特許(USP)検索結果


	会社名 Blue	Alp	出願人	BlueAlp I	nnovations B.\	/. 特許(件数 6件	
番号	特許番号	1 -	長も早い出 顔日	公開日 登録日	発明者	特許の名称 (略)	ポイント	
	US 2018/001009 (WO 2016/116	12	2015.1.19	公開日 2018.1.11	Van Der Ree	廃プラからの ディーゼルと	押出機-熱交換器-反応蒸留型反 応炉からなるプロセス。粗熱分解油の うちの高沸分を熱分解炉にリサイク	
No.1	US 2023/00599 (WO 2016/116	12	2015.1.19	公開日 2023.2.23	Weser	加熱オイル の製造シス テム	ル。チャー/高沸分混合物の連続取り 出し(チャーは分離、高沸分は熱分解 炉にリサイクル)。	
	US 2022/04032 (WO 2021/053	12	019.9.20	公開日 2022.12.22	Van Der Ree	廃プラと有	熱分解炉を上下2段に分け、上段で	
No.2	US 2024/03180	83 2	2019.9.19	公開日 2024.9.26	Van Der Ree	機液体から の長鎖炭化	長鎖炭化水素を熱分解後、下段で0~50°C温度を上げて分解。	
	US 12,024,679	2	019.9.20	登録日 2024.7.2	Van Der Ree	水素の分解	SO CAMINE CELLY CONTINTO	
No. 3	WO 2024/0468 WO 2024/0468	12	ハンン Χ マコー	公開日 2024.3.7	Van Der Ree、 Goldsmits、 Braat、 Heijmans	プラ熱分解 のための装 置と方法	熱分解炉 - 部分凝縮器 - リボイラー からなるシステムで、リボイラーの液体を 熱分解炉にリサイクル。	
No.4	WO 2024/0468 WO 2024/0468 WO 2024/0468 WO 2024/0468	97 98	2022.8.31	公開日 2024.3.7	Van Der Ree, Goldsmits, Braat, Heijmans	物質中のガ ス、液体、 固体の分離 システム	熱分解炉 - 部分凝縮器 - リボイラ- からなるシステム。熱分解炉への投 入、取出配管の詳細立体図面。	
No.5	NL 2033241	2	2022.10.5	公開日 2024.4.18	Van Der Ree、 Goldsmits	炭化水素分解用のジグ ザグ熱交換 器	ジグザグ構造の熱交換器の図あり。熱 交換器内で発生するガス気泡も考 慮。	
No.6	NL 2033250	2	2022.10.6	公開日 2024.4.19	Van Der Ree、 Goldsmits、 Braat、 Heijmans	熱分解油製 造のための 廃プラ加熱 方法	熱交換器の熱媒体に溶融塩を使用。	

注:赤字は筆頭発明者。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

(1)No.1特許(US 2018/0010050)

本特許は図 15 に示すように、a. 押出機の後に熱交換器を設置して加熱する、b. パーシャルコンデンサー付きの分離槽(熱分解炉のこと): 反応蒸留方式、c. リボイラーから重質熱分解液体を熱分解炉に戻す、d. 熱分解炉の下部より取り出したポリマー熱分解液はサイクロンセパレーターでチャーと液体部分に分離し、液体部分は熱交換器を通して再加熱にして熱分解炉に戻す、といった特徴である。

Compactor:120~150℃、押出機:250~300℃(HCI、H2S 脱気除去)、第 1 熱交換器:300~380℃、第 2 熱交換器:380~400℃、熱分解炉:~400℃、撹拌機なし、パーシャルコンデンサー:300℃(C22 以下)、非凝縮ガス:C1~C4、LIGHT BOILERS:C5~C7/C8、OIL PRODUCT(C9~C23)

図 15 BlueAlp 特許記載の熱分解油製造フロー

出所: US 2018/0010050のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。

(2)No.2特許(US 2022/0403249)

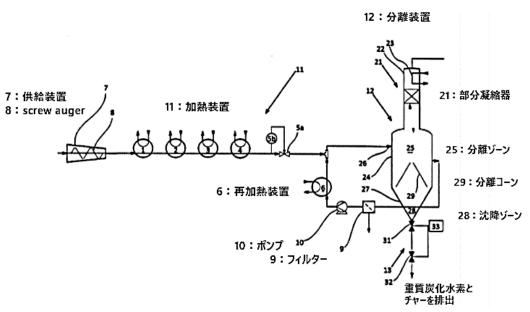


図 16 BlueAlp 特許記載の熱分解油製造フロー

出所: US 2022/0403249のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。

No. 2 特許は No. 1 特許と類似しているが、熱分解炉に撹拌機がなく、内部がコーンで上下 2 つに仕切られているのが特徴である。上部で分解した後に、下部で分解する。下部の温度は、上部よりも高い(50 $^{\circ}$ $^{\circ}$

また図 16 の再加熱装置 (6) から供給されるリサイクル量と加熱装置 (11) から供給される新たな廃プラ量の比は 8:1 から 10:1 で、リサイクル量が圧倒的に多いことは注目される。なお、熱分解炉の圧力は約 20bar である。

(3)No.3特許(WO 2024/046894)

No. 3 特許は、分離槽(熱分解炉)、部分凝縮器、リボイラーからなるのが特徴である (図 17)。なお、No. 1 と No. 2 特許と異なり、部分凝縮器は分離槽に直結していない。 リボイラーから重質熱分解液が分離槽にリサイクルされる。最適条件は、熱分解温度 $390\sim450$ \mathbb{C} 、部分凝縮器は $290\sim330$ \mathbb{C} 、リボイラー温度 $360\sim380$ \mathbb{C} である。

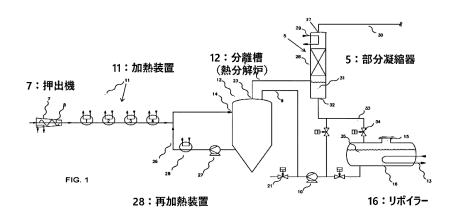


図 17 Blue Alp 特許記載の熱分解油製造フロー

出所:WO 2024/046894のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。

なお、No.3 特許には、原料廃プラ中の PE・PP の含有量は好ましくは 60%以上、PVC 含有は好ましくない、含有量 5%程度の PET は受け入れられると記載されている。

(4)No.4特許(WO 2024/046898)

図 18 に、分離槽 (熱分解炉) の配管配置図を示す。この分離槽には、撹拌機や分離コーンはない。図 18 の 121 と 122 の feed injection point は、tangentially feed (接線方向供給)で swirl (渦巻) または cyclonic fluid flow にすることが特徴である。

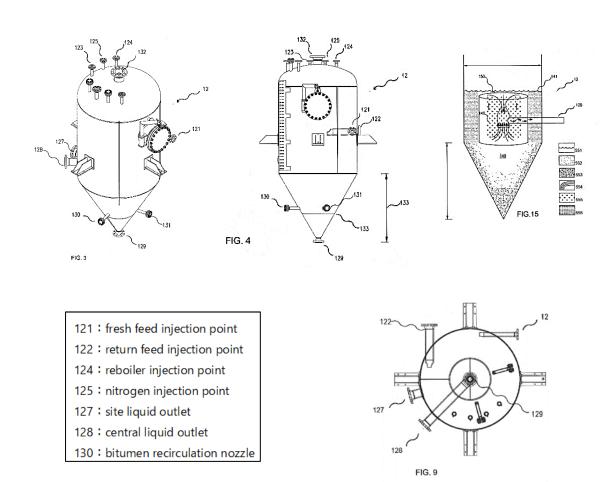


図 18 Blue Alp 特許記載の分離槽(熱分解炉)の配管配置図

出所:WO 2024/046898のFIG.3、4、9、15

(5) No.5特許(NL 2033241)

No. 2 や No. 3 特許に記載されている熱交換器の構造を規定している。

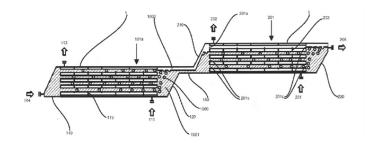


図 19 BlueAlp 特許記載のジグザグ構造の熱交換器の一例

出所:NL 2033241のFig.3

(6) No.6特許(NL 2033250)

No.2 や No.3 特許に記載の加熱装置として溶融塩を使用したものを開示している。

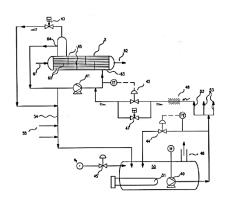


図 20 Blue Alp 特許記載の溶融塩を使用した熱交換器

出所:NL 2033250のFig.2

4.4 コメント

No. 1~No. 3 特許に共通した「a. 押出機の後に加熱用熱交換器を設置してポリマーを加熱する、b. 熱分解炉(分離槽)から熱分解液体を抜き出し、これを熱交換器で再加熱して熱分解炉に戻す」ことがBlueAlp技術のコアである。これにより熱分解炉の加熱負荷は減少し、マイルドな熱分解やスケーラビリティが確保されるのであろう。技術的に熱交換器の増強によるスケールアップは、熱分解炉のスケールアップより容易である。2024年以降の公表資料にb. の外部循環加熱が付け加わったことが注目される。また、熱分解炉構造や部分凝縮器について、複数特許が出願されており、これも重要なポイントである。

5. Pryme(オランダ) ¹¹

5.1 概要

Pryme Clean Tech (Pryme と略す) は 2021 年第 4 四半期にオスロで IPO したベンチャーで、反応器設計に長い経験を持つチームである。2021 年末にオランダ・Rotterdamで工場 (「Pryme One」と命名) の建設開始、2023 年第 3 四半期に試運転を開始した。投資額 (設計、建設、スタートアップ) は 6,900 万ユーロである。

2024 年 1 月 19 日に最初の熱分解油を生産し 12 、稼働を続けているが稼働率は上がっていない 13 。このため、2025 年に稼働前のネームプレート廃プラ処理能力を 4 万トン/年から 2.6 万トン/年に修正し、公表オイル生産能力を 3 万トン/年から 1.7 万トン/年に修正した。

修正後でも熱分解炉 1 基当たりのオイル生産能力は Pryme が 1.7 万トン/年で、Plastic Energy の 0.18 万トン/年 (6 基で 1.1 万トン/年) や Quantafuel の 0.4 万トン/年 (4 基で 1.6 万トン/年) よりも生産性が高いと、Pryme は発表している (詳細は上巻 25 頁の表 9 参照)。

5.2 公表資料によるプロセスの特徴

技術のポイントは、廃プラを押出機で短時間(30 秒)に 20℃から 350℃に急速昇温して水分と揮発分を除去しながら熱分解炉に 5 トン/hr で供給することと、熱分解炉のコア温度と温度コントロール(一例、熱分解炉出口ガス温度が 550℃と高い)にある。熱分解炉は容積 20 m³の圧力容器で電気加熱(600℃まで加熱可能)、無酸素条件で熱分解を行う。これにより効率的な分解を行い、廃プラの転化率は 100%になる(熱分解でできた灰分中に有機物が含まれていない)。押出機工程に塩素などの不純物を除去するプロセスが含まれている。プロセスの経済性についても発表している。

29

¹¹ https://pryme-cleantech.com/ https://pryme-cleantech.com/investors-relations その中の一番下にある Investor presentation Q3 2023 など参照。

https://uk.marketscreener.com/quote/stock/PRYME-N-V-119018998/news/Pryme-N-V-produces-first-oil-45782132/

^{13 2024} 年アニュアルリポート(2025 年 5 月発表)、2025 年第一四半期報告。 https://pryme-cleantech.com/investors-relations

表 9 Pryme の公表資料によるプロセスの特徴

	プラント 所在地	 主たる提携石油 . 化学企業ほか	熱分解条件				
企業名			触媒	特徴	熱分解炉の形状・サイズと 生産能力		
Pryme	オランダ・ Rotterdam	 Shell、 LyondellBasell (投資)	なし	廃プラを押出機で高速加 熱 (20°C→350°C、30 秒) で、水分と揮発分を 除去して、熱分解炉に フィード。	横型熱分解炉(20m3、電気 ヒーター)1基でオイル 生産能 カ1.7万トン/年で、コスト競争 力が高い。		

出所:公表資料より旭リサーチセンター作成。

5.3 特許検索結果と注目される特許プロセス

出願人 Pryme で検索しても該当件数はゼロである。Pryme 創始者名 Rik Van Meirhaeghe で発明者検索して、2 件ヒットした。出願人は CCT International (CCT と略す) である。

表 10 Pryme の米国特許(USP)検索結果

	会社名 Prym	ie 出	願人 CO	CT Internation	onal 特	許件数 2件
番号	特許番号	最も早い 出願日	公開日 登録日	発明者	特許の名称 (略)	ポイント
No.1	US 2023/0201894 (WO 2021/28547)	2020.5.14	公開日 2023.6.29	Van Der Endt、 Van Meirhaeghe	補助材料存在下での廃プラの熱分解	熱分解炉の壁面を補助材料との摩耗で清掃する。補助材料として、貝殻などを使用。貝殻の主成分のCaCO3はハロゲンキャッチャーとしての効果もある。MgCO3やCa(OH)2も使用できる。熱分解炉には、熱分解炉壁面を掻き取るタイプのブレードが付いた撹拌機が使用される。
No.2	US 2023/0265348 (EP4182405)		公開日 2023.8.24	Van Meirhaeghe、	廃プラを熱分 解する工業的	供給廃プラを2軸押出機(固有のスクリュー構造)により、短時間に高温高圧のメルト状態にし、連結部で減圧にして、熱分解炉に供給する。熱分解炉は連結部より高温にする。分解生成物ベーパーは熱分解炉から連続的に排出される。また、連続熱分解後に、バッチ熱分解を行うセミバッチ運転例の記載もある。
	US 12,338,393	2020.7.17	登録日 2025.6.24	Van Der Endt Parmentier	方法	

注:赤字は筆頭発明者、Van MeirhaegheはPrymeの創始者。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

(1)No.1特許(US 2023/0201894)

No.1 特許は、特殊撹拌機で熱分解炉の壁面に積もったチャーやポリマーを掻き取ること(図 21 と図 22)と、CaCO3 などの添加剤を熱分解炉に投入して掻き取る効果を向上させる方法に関する特許である。

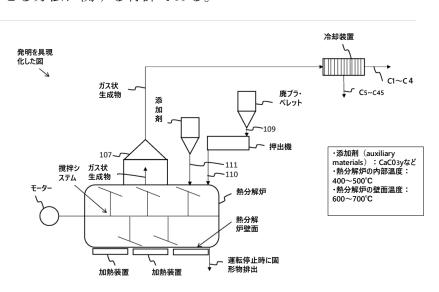


図 21 CCT(Pryme)特許記載の熱分解炉と周辺装置

出所: US 2023/0201894 のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。 □内は明細書データを基に旭リサーチセンターが翻訳。

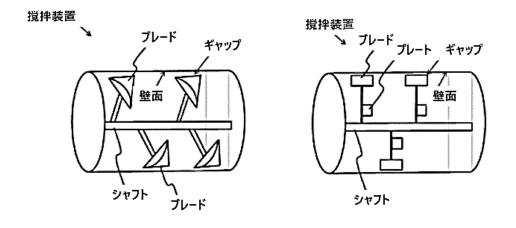


図 22 CCT(Pryme)特許記載の熱分解炉撹拌装置の構造

出所:図はUS 2023/0201894のFig.2。図の機器名は旭リサーチセンターが日本語に翻訳。

(2)No.2特許(US 2023/0265348)

No. 2 特許は No. 1 特許の改良特許である。明細書には、2 軸押出機 - 連結部 - 熱分解 炉からなる装置(図 23) と 2 軸押出機 - 第 1 連結部 - バッファータンク - 第 2 連結部 - 熱分解炉からなる装置(図 24) が示されている。

連結部やバッファータンクを使用する目的は明細書からはよくわからなかったが、 廃プラポリマーメルトの供給安定性の改善であろう。

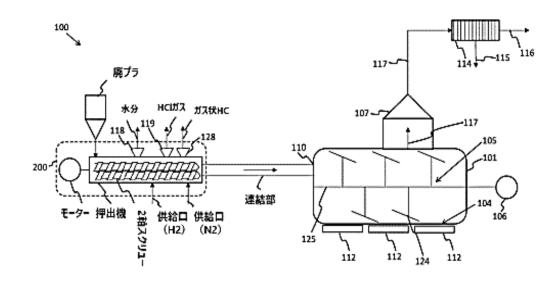


図 23 CCT(Pryme)特許記載の押出機、連結部、熱分解炉からなる装置

出所:図はUS 2023/0265348のFig.1。図の機器名は旭リサーチセンターが日本語に翻訳。

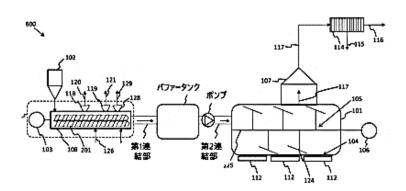


図 24 CCT(Pryme)特許記載の押出機、第 1、2 連結部、バッファータンク、熱分解炉 からなる装置

出所: US 2023/0265348のFig.2。図の機器名は旭リサーチセンターが日本語に翻訳。

No. 2 特許の明細書の重要点を抜粋すると、

a. 2 軸押出機に廃プラを供給し、せん断力などの機械エネルギーで廃プラを急速に昇温し、押出機出口では高圧にしてかつ熱分解が開始する直前の温度(例えば、330~350℃)にする。高圧にすると熱分解が抑えられるので、押出機出口温度を上げられる。

この押出機出口の高温高圧の状態を「Extreme condition」と呼んでいる。これを可能にしたのは2軸押出機の固有のスクリュー構造(Screw arrangement)である。

また、押出機中で水分脱気、塩化水素脱気(水素を押出機に供給して分解塩素を塩化水素に変換する。210℃で廃プラの脱塩素反応がおこり、190℃で塩素含有ガスは脱気される)の後、窒素を押出機に供給して揮発性炭化水素(熱分解の一部開始のために発生)を脱気して窒素置換する。脱気後のメルトポリマー中の揮発性炭化水素の含有量は 1%以下にする。窒素置換すると、押出機出口における高圧による熱分解防止効果が高まる。

b. (一例) 固有の Screw arrangement 技術によって、押出機出口の温度を $330\sim350$ でにして、メルト状態の廃プラには炭化水素が含まれていない状態(1%以下)にする。押出機出口の高圧(~30 bar)は連結部に入ると低下する。熱分解炉は 420 でに設定し、熱分解ベーパーが排出される。熱分解炉に未分解メルトポリマーが徐々にたまり、70%で充填された時に、原料フィードを停止してバッチ運転に切り替える。そして熱分解温度を 500 でまで上げて、熱分解を完結する。これはセミバッチプロセスである。

廃プラを押出機で 20℃から 350℃に昇温するのには、熱量として 840 kJ/kg必要であり、熱分解炉で 350℃から 420℃にするには 500 kJ/kgが必要である。必要熱量の 63%を押出機段階で与えているのがプロセスの特徴である。

c. クレームは 1~15 がキャンセルされており、16~30 がクレームされている。クレームのいたるところで「Screw arrangement」が発明のポイントであることが述べられている。クレーム 26 に連続プロセスとバッチプロセスの両方がクレームされている。

クレーム 27 では熱分解炉内部温度は押出機出口温度より 50~150℃高く、バッチプロセスは連続プロセスよりも60~100℃温度が高いと規定されている。

5.4 コメント

Pryme の公表資料と特許 (No.1 と No.2) はよく対応している。No.2 特許には設計思想も書かれている。2 軸押出機により急速加熱して、廃プラを 350℃まで加熱した後熱分解炉に供給し、他社よりは高温で熱分解して生産性の高いプロセスにすることを狙ったものと思われる。高温熱分解により想定される熱分解炉壁面でのチャーの増加は、発生初期に特殊固有撹拌機と補助材 CaCO3 で除去することで可能と考えたのだろうか。

しかし、2 軸押出機と特殊固有撹拌機という 2 つの手法だけでは高温熱分解を実現するには十分でない感じがする。未確認の特許技術や未公開ノウハウがあるのかもしれない。したがって、Pryme については、特許からは十分なプロセス解明ができていないと認識している。

【参考】

Indaver も Pryme と同様に 2 軸押出機を新工場に採用している。

2023 年 7 月 12 日の Coperion の記事 ¹⁴: Indaver は建設中の熱分解油工場に、廃プラを熱分解炉に連続供給するために、エネルギー効率の高い Coperion の ZSK2 軸スクリュー押出機を設置する。この押出機は Indaver の「P2C プロセス」において中心的な機能を担っている。毎時最大 3.7 トンのスループットで押出機のプロセスセクションを通過させて、廃プラを熱分解炉に供給する。押出機の 2 軸スクリューは、集中的なせん断力と分散力を利用して、非常に短い時間で大量の機械的エネルギーを廃プラの流れに導入する。わずか 30 秒で、圧縮された原料廃プラは、最高 350℃の均質な溶融物に変換される。

 $^{^{14}\ \}text{https://www.coperion.com/en/news-media/newsroom/} 2023/zsk-extruder-for-chemical-recycling and the state of the$

6. LyondellBasell(欧州と米国)

6.1 概要

LyondellBasell は 2023 年から自社技術 (MoReTec と命名) を用いた本格生産工場の 建設中 (ドイツ、Wesseling 5 万トン/年) で、2026 年に完成する。

MoReTec - イノベーションのストーリー¹⁵ によれば、「2018 年、Lyondel1Basel1 はドイツのカールスルーエ工科大学(KIT)と共同で廃プラの CR の基礎研究を開始し、MoReTec 技術の効率性を実験室規模で実証した。2019 年 10 月には、イタリアのFerrara に CR のパイロットプラントを建設し、2020 年 8 月に稼働を開始した。パイロットプラントでの研究により、リサイクルプロセスの効率を改善し、商業用触媒を特定し、廃プラ原料の特性評価をさらに進めた。2021 年にパイロットプラントを小規模な産業施設(セミコマーシャルプラント)に拡張した」。

また、欧州化学工業連盟(Cefic)は触媒開発の経緯を次のように記載している。「LyondellBasell はイタリア・Ferraraで2020年9月に MoReTec 熱分解法パイロットをスタートした。その結果を基に、本プラント建設の最終決定をした。最初は米国のHouston Technology Center (HTC)で技術開発が開始され、熱分解に適している可能性のある数種類の触媒がスクリーニングされた。そして、ドイツ・Frankfurt にあるR&D センターの触媒システムと KIT の反応器を組み合わせて、ドイツでのパイロット研究が続けられた。その後に建設された Ferrara パイロットプラントは、毎時 5~10 kgの家庭プラスチック廃棄物を処理することができ、最も有望な触媒がテストされてきた16」。

同社のウェブサイトに記載されている全体の資源循環のクローズドループを図 25 に示す。標準的なクローズドループである。以前、同社の熱分解プロセスでは、熱分解で一挙にエチレンやプロピレンをつくるとの情報もあったが、そうではないようである。

https://www.lyondellbasell.com/en/news-events/products--technology-news/lyondellbasell-makesdecision-to-progress-advanced-recycling-plant-in-wesseling-germany/

https://cefic.org/a-solution-provider-for-sustainability/chemical-recycling-making-plastics-circular/chemical-recycling-via-conversion-to-feedstock/start-up-of-lyondellbasells-moretec-plant-underlines-ambitious-plastic-waste-targets

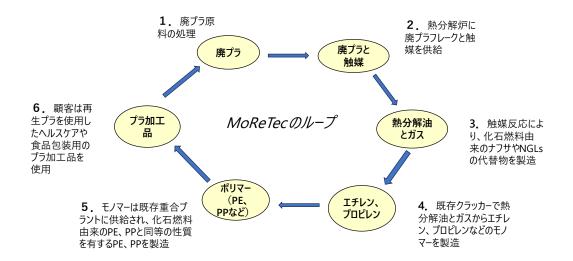


図 25 LyondellBasell の MoReTec のループ

出所:LyondellBasellのウェブサイト17を基に旭リサーチセンターが編集。

6.2 公表資料によるプロセスの特徴

表 11 LyondellBasell の公表資料によるプロセスの特徴

企業名	プラント	年間処理	提携石油化学	熱分解条件			
(プロセス名)			企業	触媒	連続/バッチ	熱分解炉形 状	
LyondellBasell (<i>MoReTec</i>)	ドイツ・ Wesseling	5万トン (2026年 完成予定)	LyondellBasell	使用	連続	横型撹拌機 付き熱分解炉 (KIT)	

出所:公表資料より旭リサーチセンター作成。

図 26 は KIT のウェブサイトにある熱分解装置の模式図である 18。

横型スクリュー付き熱分解炉、電気ヒーター、熱分解炉で生成する熱分解ベーパー のフィルターエレメント、固形物(チャーなど)の連続的排出に特徴がみられる。

.

 $^{^{17}\} https://www.lyondellbasell.com/49688c/globalassets/sustainability/2023_lyb_sustainability_report.pdf$

 $^{^{18}\ \}text{https://onlinelibrary.wiley.com/doi/epdf/} 10.1002/\text{cite.} 202100102$

図 26 KIT の熱分解プロセス(供給システム、スクリュー熱分解炉、ホットガスフィルター、 熱分解ベーパーの凝縮ユニット)

出所:KITの発表資料のFig.2を基に旭リサーチセンターが編集。

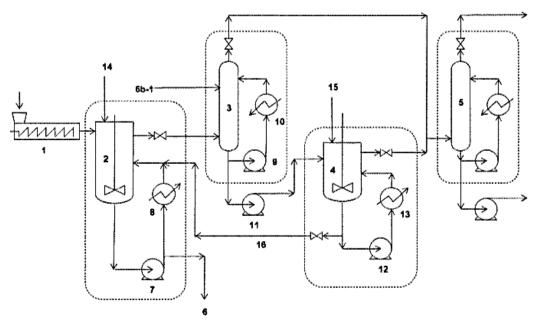
6.3 特許検索結果と注目される特許プロセス

出願人 Basell Poliolefine で検索し、表 12 の No. 1~19 の特許が抽出された。表 12 においては、発明者を Houston Technology Center (HTC) などの米国研究者とイタリアとドイツのパイロットで開発を担当する欧州研究者に分類した。時期的に、前半は米国発明者が中心の特許が多く、後半は欧州発明者が多い。

(1)プロセス特許

①熱分解プロセス: No. 7 特許(US 2024/0059974)と No. 19 (W02025/099039)

No.7 と No.19 (No.7 の改良特許) の特許は、KIT の横型スクリュー型熱分解反応炉 (図 26) 関連ではなく、連続撹拌機付き槽型熱分解炉 (CSTR) 2基をシリーズで連結したものである。2 つの CSTR 間にはリサイクルラインが設けられている。また、改良特許 No.19 では、2 つの熱分解炉の間に不純物除去のための液ー液抽出装置が付加されている。


表 12 LyondellBasell の米国特許(USP)検索結果

	会社名 Lyonde								
番号	特許番号	最も早い 出願日	公開日、 登録日	発明者(左欄	:米国、	右欄:欧州)	特許の名称 (略)	ポイント	
No.1	公開 US 2021/0061972	2019.8.29	公開日 2021.3.4	Nagy、White、 Yang、Davis	Smith、	Fraaije、Mihan	フロロ化アルミナ触 媒を用いた熱分解	フロロ化アルミナ触媒。	
No.2	公開 US 2021/0070958 登録 US 11,319,424	2019.9.9	公開日 2021.3.11 登録日 2022.5.3	Nagy、White、Smith、 Yang、Ramage、Davis		Brita、Fraaije、 Guidotti、 Mihan、 Liguori	熱分解用 halloysite触媒	halloysite clayを触媒に用いる。 典型的には、 Al2Si2Os(OH)4で、天然でナノチューブ形状になっ ている。 最大、廃プラ300gのテスト。	
No.3	公開 US 2021/0070959 登録 US 11,377,534	2019.9.9	公開日 2021.3.11 登録日 2022.7.5	Nagy、White、Smith、 Yang、Davis、Deal		Brita、 Guidotti、 Liguori	ポリオレフィンの金 属酸化物による解 重合	金属酸化物としては、WO3、MgO、 Al2O3*TiO2、Sb2O3、MoO3、MoO2、BiO2が 好ましく、特にAl2O3*TiO2が必須。PRRリアク ター使用(廃プラ20gのテスト)。	
No.4	公開 US 2022/0112352 登録 US 12173124	2020.10.9	公開日 2022.4.14 登録日 2024.12.24	Nagy、White、 Ramage	Smith、	なし	スチレンアシストに よるポリオレフィン 熱分解	スチレンモノマーやオリゴマーを共存させて熱分解。	
No.5	公開 US 2022/0135760 登録 US 11,767,408	2020.10.30	公開日 2022.5.5 登録日 2023.9.26	Nagy、White、 Yang、Ramage		なし	熱分解用の担持 した金属触媒	ScOx、ZrOx、Wox、MnOx、NiOx on SiO2、TiO2、Al2O3の触媒使用。	
No.6	公開 US 2022/0176358 登録 US 11,872,545	2020.12.7	公開日 2022.6.9 登録日 2024.1.16	37	gy、White、Smith、 mage、Hallinan		熱分解のための複合触媒	ゼオライト + 共触媒の複合触媒。ポリオレフィン以 外のブラの毒性効果を減少できる。好ましくは、 各種ゼオライト + Ca(OH)2 or Zr(HPO4)2	
No.7	公開 -US 2024/0059974 (PCT/EP2021/086927) -US-20240308937 (PCT/EP2021/086926) -登録 US 12,319,875	2020.12.22	公開日 2024.2.22 登録日 2025.6.3	なし	Finetti . Mazzuo		熱分解プロセスと チャーハンドリング セクション統合	CSTR2基シリーズの熱分解プロセスフロー図がある。熱分解炉底部より取り出したチャー低濃度スラリーを2段濃縮後、搬送して取り出す。	
No.8	公開 US 2024/0117141 (PCT/EP2022/051275)	2021.1.21	公開日 2024.4.11	なし	Mihan	Fraaije	廃プラの水素化分解	廃プラを水素化触媒(Fe、Mo、V)と解重合用 酸性触媒(シリカアルミナ、ゼオライト)で水素存 在下で分解。	
No.9	公開 US 2023/0009131	2021.7.8	公開日 2023.1.12	Nagy、White、 Ramage、Hear	y, White, Smith, nage, Heaps		熱分解のための廃プラの前処理	水中の密度差分離法。	
No.1 0	公開 US 2025/0092215	2021.8.3	公開日 2025.3.20	なし		Guidotti、 、Menichelli	シリカベース触媒に よるプラスチックの 解重合	FeとMo以外の金属をドープした既定の表面積とBET 表面積を有するシリカ触媒を使用。	
No.11	公開 US 2023/0106395	2021.9.30	公開日 2023.4.6	Nagy、White、 Ramage、Yang		なし	高圧化のHDPEと PPの熱分解	400~600°C、4~15bars	
No.12	公開 US 2024/0327715 WO 2023/088861	2021.11.17	公開日 2024.10.3	<mark>Nagy、</mark> Hallinan		Guidotti、 、Menichelli	シリカベース触媒に よるプラスチックの 解重合	SiO2やAl2O3に担持したヘテロポリ酸(Hn [XM12O40])を触媒に使用する。X = Si,PAs、M=W,Mo,V	
No.13	公開 US 2025/0215328 (PCT/EP2023/058372)	2022.3.30	公開日 2025.7.3	Mihan	なし		廃プラスチックの触 媒的分解によるオ レフィンの製造	ポリオレフィン含有量が高い廃プラを原料に、触媒 存在下に熱分解してオレフィンを製造する方法	
No.14	公開 US 2025/0206906 (PCT/EP2023/058217)	2022.4.4	公開日 2025.6.26	なし	Brita、Guidotti、 Liguori、Menichelli		熱触媒的プラス チック解重合	Al2O3/SiO2比5.0以上のAl2O3・SiO2解重合触媒。	
No.15	公開 US 2025/0197591 (PCT/EP2023/065944)	2022.6.21	公開日 2025.6.19	なし	Finetti、Baita、Brita、 Capolungo、 Marturano、Mei		廃プラ解重合のた めのプロセス	遠心分離機とシェル&チューブ熱交換器を含む 循環系プロセス(図あり)。	
No.16	公開 US 2024/0076467	2022.8.25	公開日 2024.3.7	Nagy、 White、 Ramage、 Halli			触媒酸化型熱分 解	触媒(金属酸化物)と酸素存在下での熱分解。	
No.17	公開 US 2024/0132425 公開 US 2024/0228405	2022.10.24	公開日 2024.4.25 公開日 2024.7.11	Nagy、 Smith、White	Brita, Guidotti, Liguori, Menichelli, Ruzz		解重合触媒システ ムとプロセス	触媒は、ゼオライトと活性クレイと(または)固体塩基を含む共触媒からなる。 触媒 被毒を防止。	
No.18	公開 WO 2025/011988	2023.7.11	公開日 2025.1.16	なし	Brita, Guidotti, Liguori, Menichelli, Ruzz		担持イオン液体触 媒による廃プラ解 重合	・SiO2、Al2O3またはTiO2に担持したイオン液体触媒。 ・触媒被毒防止化合物Ca(OH)2、 aluminosilicates、Zr(HPO4)2の添加。	
No.19	公開 WO 2025/099039	2023.11.6	公開日 2025.5.15	なし	Brita、N Finetti	Menichelli.	廃プラ解重合プロ セス	2つの撹拌機付き熱分解炉とその間に液-液抽 出装置を含むプロセス。No.7の改良特許。	

注:赤字は筆頭発明者 注:黄色地は触媒特許

出所:米国特許検索結果に基づき旭リサーチセンター作成。

図 27 に No. 7 特許、図 28 に No. 19 特許の熱分解プロセスフローを示す。

1:押出機、2:第1熱分解炉、3:第1凝縮ユニット、4:第2熱分解炉、5:第2凝縮ユニット、6:チャー処理設備(図30参照)、7:リサイクルポンプ、14:触媒、15:触媒(オプション)、16:熱分解油リサイクルライン

図 27 LyondellBasell 特許記載の熱分解プロセスの全体フロー

出所: US 2024/0059974のFig.1。機器名は旭リサーチセンターが日本語に翻訳。

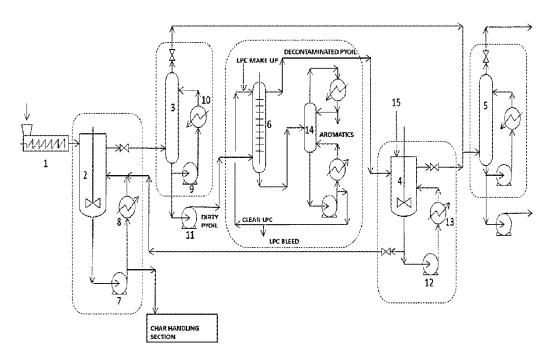


図 28 LyondellBasell 特許記載の液-液抽出による熱分解油精製を含む全体フロー

出所: W02025/099039のFig. 1。

No. 19 特許は No. 7 特許に液一液抽出装置を追加した改良特許である。図 28 の第 1 凝縮ユニット (3) の下部取り出しストリームに、液一液抽出塔 (6) を設けて、熱分解油中の異物除去を行う。液一液抽出に使用される有機化合物錯体が明細書に列挙されている。フレッシュな触媒は、不純物が除去されている第 2 熱分解炉 (4) に供給することが望ましいと記されている。第 2 熱分解炉 (4) の下部の抜き出しストリームから第 1 熱分解炉 (2) にも触媒は存在する。

②ポリマー熱分解油外部循環・加熱プロセス: No. 15 特許(US 2025/0197591)

図 29 に示すように、熱分解炉(2)から取り出したポリマー熱分解液を遠心ポンプ(4)で液体と固体に分離し、液体はシェル&チューブ熱交換器(5)を使って外部加熱して、熱分解炉(2)に戻す。外部加熱により、熱分解に必要な熱量の80%を供給すると熱分解炉壁面のチャーの生成が抑えられる。実施例によれば、押出機(1)の温度は 250℃、7 kg/hr で廃プラを供給し、熱分解炉(2)の温度は 410℃、4bar、滞留時間 3 時間、熱分解炉底部よりポリマー熱分解液を取り出し、遠心ポンプ(4)で、液とチャー(13)に分離、シェル&チューブ熱交換器(5)(シェル温度 465℃)で加熱し、熱分解に必要な熱量の 80%を外部加熱で賄うと、熱分解炉壁面でのチャーの生成が認められなかった。

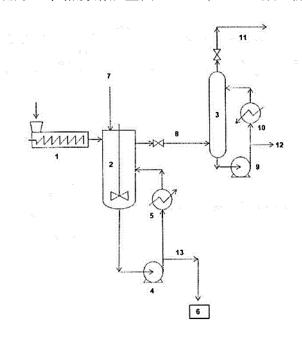
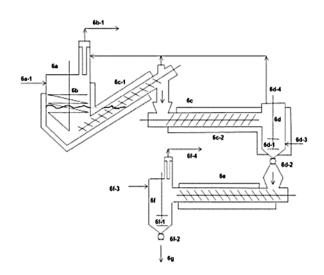



図 29 LyondellBasell 特許記載の遠心分離機(4)とシェル&チューブ熱交換器(5)を含む ポリマー熱分解液の循環プロセス

出所:US 2025/0197591のFig.1。

③チャーの取り出し方法: No. 7 特許(US 2024/0059974)

図 30 は、熱分解炉から抜き出したポリマー熱分解液の 2 段階加熱濃縮法によるチャー分離法である。

6a: 高濃度チャースラリーチャンバー (撹拌加熱)

6b-1: ベーパー成分 6c: スクリューコンベヤー

6d: 高濃度チャースラリーチャンバー (撹拌加熱)

6e:スクリューコンベヤー

6f:撹拌機付き収集チャンバー

6g:ドライチャーは運搬可能容器に投入

図 30 LyondellBasell 特許記載の熱分解炉から抜出したポリマー熱分解液の 2 段階加熱濃縮法によるチャー分離法

出所: US 2024/0059974のFig.2。機器名は旭リサーチセンターが日本語に翻訳。

(2)触媒特許

表 13 に、No. 1、2、3、5、6、10、12、14、17、18 の触媒特許 10 件をまとめた。

表 13 LyondellBasell の触媒特許

番号	特許番号	主たる 発明者	ポイント
No.1	US 2021/0061972	Nagy	フロロ化アルミナ触媒。
No.2	US 2021/0070958	Brita	halloysite clayを触媒に用いる。典型的には、Al2Si2O5(OH)4で、天然でナノチューブ 形状になっている。最大、廃プラ300gのテスト。
No.3	US 2021/0070959	Brita	金属酸化物としては、WO3、MgO、Al2O3*TiO2、Sb2O3、MoO3、MoO2、BiO2が好ましく、特にAl2O3*TiO2が必須。PRRリアクター使用(廃プラ20gのテスト)。
No.5	US 2022/0135760	Nagy	ScOx、ZrOx、Wox、MnOx、NiOx on SiO2、TiO2、Al2O3の触媒使用。
No.6	US 2022/0176358	Nagy	ゼオライト + 共触媒の複合触媒。ポリオレフィン以外のプラの毒性効果を減少できる。 好ましくは、各種ゼオライト + Ca(OH)2 or Zr(HPO4)2
No.10	US 2025/0092215	Brita	FeとMo以外の金属をドープした既定の表面積とBET表面積を有するシリカ触媒を使用。
No.12	US 2024/0327715	Nagy、 Brita	SiO2やAl2O3に担持したヘテロポリ酸(Hn [XM12O40])を触媒に使用する。X = Si,P,As、M=W,Mo,V
No.14	US 2025/0206906	Brita	Al2O3/SiO2比5.0以上のAl2O3・SiO2解重合触媒。
No.17	US 2024/0132425	Nagy、 Brita	触媒は、ゼオライトと活性クレイと(または)固体塩基を含む共触媒からなる。触媒被毒を防止。
No.18	WO 2025/011988	Brita	SiO2、Al2O3またはTiO2に担持したイオン液体触媒。触媒被毒防止化合物Ca(OH)、aluminosilicates、Zr(HPO4)2の添加。

出所:米国特許検索結果に基づき旭リサーチセンター作成。

①酸化物系触媒

酸化物触媒としては、No. 1 特許(フロロアルミナ触媒)、No. 2 特許(halloysite 触媒:特に Al2Si2O5(OH)4)、No. 3 特許(金属酸化物触媒:特に Al2O3*TiO2)、No. 5 特許(シリカやアルミナに担持した金属酸化物触媒(ScOx、ZrOx、Wox、MnOx、NiOx)、No. 10 特許(金属ドープしたメソポーラスシリカ触媒)、No. 12 特許(シリカやアルミナ担持へテロポリ酸触媒)、No. 14 特許(Al2O3/SiO2 比 5. 0 以上の Al2O3・SiO2 触媒)、No. 18 特許(SiO2 や Al2O3 担持のイオン液体触媒)がある。

これら酸化物触媒のうち、No. 12 特許(シリカやアルミナ担持へテロポリ酸触媒)は 米国と欧州の両方の発明者の数が多く、また US 出願と EP 出願を合体して WO 出願にし ており、重要と考えられる。 なお、No. 12 特許には、「ゼオライト触媒はバージンプラスチックや単一種類の廃プラには高い熱分解特性を示すが、混合廃プラ(実廃プラ)では触媒性能の劣化が大きい。したがって、実際の混合廃プラを使用した時の触媒性能の予想がつかない」と記載されている。また、No. 12 特許には、触媒被毒防止化合物(Ca(OH)2、aluminosilicates、phyllosilicates、Zr(HPO4)2 など)の添加が好ましいことが記載され、実施例にも記載されている。

一方、最新の No. 18 特許 (SiO2 や Al2O3 担持のイオン液体触媒)には、サブクレームとして、触媒被毒防止化合物 (Ca(OH)2、aluminosilicates、Zr(HPO4)2など)の添加が規定されている。また、好ましいプロセスの実施態様として、No. 7 特許記載の連続撹拌機付き槽型熱分解炉 (CSTR) 2 基をシリーズで連結する系を挙げている。そして、第 2 熱分解炉にフレッシュな触媒をフィードする方法を推奨している。

②ゼオライト系触媒

ゼオライト系触媒については単独の出願はなく、ゼオライト触媒とゼオライト触媒 の不純物による被毒を防止するための共触媒からなる複合特許が2件出願されている。

No. 6 特許は、ゼオライト+共触媒の複合触媒に関するもので、共触媒としては Ca(OH)2または Zr(HPO4)2である。ポリオレフィン以外の廃プラおよびそれら廃プラ中の添加剤の触媒に対する毒性効果を減少できるとしている。

No. 17 特許はゼオライトと活性クレイ (ベントナイトなど) と (または) 固体塩基を含む共触媒からなる複合触媒に関するものである。被毒物質のゼオライト触媒への影響を防止できるという。

③工業触媒は?

同社は触媒使用を明言しているが、その種類は公表しておらず、何が工業触媒になるかは興味のあるところである。

No. 19 の最新のプロセス特許には、次のような重要な記述があり、本命触媒を示唆するものかもしれない。「熱分解用触媒としては、金属酸化物、ヘテロポリ酸、メンポーラスシリカ、アルミノシリケート (ハロサイトやカオリナイト)、および好ましくはゼオライトが選択される。好ましいゼオライトは合成 Y 型ゼオライトと ZSM-5 ゼオライ

トである。廃プラの腐食性を低減するためと解重合効率向上のためにポリマー溶融物に添加剤を加えることがある。また、触媒毒を低減するために、触媒とともに添加剤が使用される。これら添加剤の好ましいものは、Ca(OH)2、ベントナイトなどのアルミノシリケート、Zr(HPO4)2とそれらの混合物である。触媒の使用量は廃プラに対して、10重量%未満、好ましくは5重量%未満、さらに好ましくは2重量%未満である。

触媒は(不純物が除去されている)第2熱分解炉に供給することが好ましい。」

6.4 コメント

(1)工業プロセス

特許調査により、工業的に使用されるプロセスは、KIT プロセスではなく、自社開発の CSTR2 基シリーズ (No. 7 特許と No. 19 特許) と考えられる。フレッシュ触媒は 2 基目にフィードすることを推奨していることが注目される。

ポリマー熱分解液の外部循環・加熱の比率を上げると、チャーが発生しないとする No. 15 特許は重要であり、よく解析したい。

(2)工業的に採用される触媒とは

工場はいったんつくると改造は容易でないが、触媒は変更しやすいので工場稼働まで触媒選定の検討が続くであろう。上述(No. 19 の記載)のように、現時点ではゼオライト系の評価が高いようである。

なお、同社の触媒特許には、バッチのフラスコテストデータしかなく、パイロット データはない。使用触媒の再生や寿命についての記載もない。そういうものを評価して、 総合的に触媒選定している(される)のだろう。

(参考)札幌プラスチック

【公表資料による工場の概要とプロセスの特徴】

工場は廃プラ処理能力 20 トン/日の系列が 2 系列あり、合計で 40 トン/日 (約 1.5 万トン/年) である。敷地面積は 15,000m² である。プロセスの特徴を表 14 にまとめた。

表 14 札幌プラスチックの公表資料によるプロセスの特徴

企業名		年間処理 能力	原料廃プラ	熱分解条件			
				触媒	熱分解温度、連続/バッチ	熱分解炉形 状	反応成績
札幌プラ スチック	日本(札幌) 2001~2011年 稼働	1.5万トン (2系 列)	容器包装リ サイクル法に 基づいて収 集された廃 プラ	なし	PVCを事前分解 (300~330°C) 分解物のHCI 回収、400°C熱分 解、セミバッチ	ロータリーキル ン型、セラ ミックボール	軽質油31.0%、 中質油4.5%、 重質油26.5%、 オフガス19.5%、 油化残渣17.5%、 塩酸1.0%

出所:公表資料より旭リサーチセンター作成。

【熱分解工場のプロセスフロー】

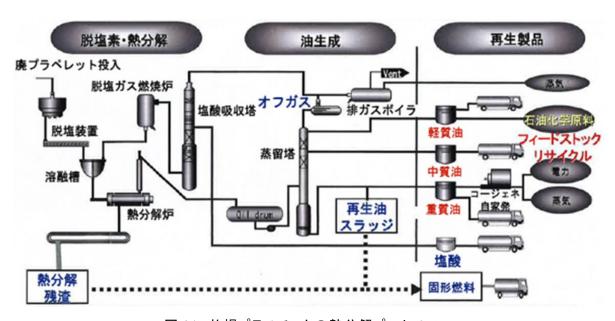


図 31 札幌プラスチックの熱分解プロセスフロー

出所:塩谷操「油化手法の概要;特徴と今後の課題・要望 ~札幌プラスチックリサイクル(株)(SPR)を中心として~」(2007年2月)。 https://www.env.go.jp/council/former2013/03haiki/y0315-02/mat05-1.pdf 熱分解工場のプロセスフローを図 31 に示すが、実際の工場のフローを記載したものではなく、熱分解炉数などが簡素化されている。混合廃プラの熱分解の前に、PVC を比較的低い温度で押出機型の脱塩装置で分解し、塩化水素を回収する工程に特徴がある。

【ロータリーキルン型熱分解炉】

工場(実用装置)に採用された、ロータリーキルンの構造を図 32 に示す。また、そのサイズと廃プラ処理能力も公表されている。また、実証装置のサイズと廃プラ処理能力も公表されている。

- ①実用装置のロータリーキルンの容積 11.4m³、定格処理量 10 トン/日である。

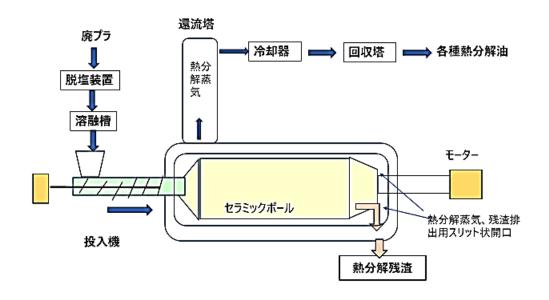


図 32 札幌プラスチックの実用装置(ロータリーキルン型熱分解装置)

出所:参考文献(7)、

福島正明、伊部英紀ら、廃棄物資源循環学会論文誌, Vol. 22, No. 2, pp. 114-126, 2011 https://www.jstage.jst.go.jp/article/jjsmcwm/22/2/22_2_114/_pdf/-char/ja 図32は元の図を基に旭リサーチセンターが編集。

【熱分解炉の運転サイクル】

実用装置のセミバッチ運転サイクルが参考文献(7)の図 4 (溶融プラ投入 13 時間の熱 分解実用試験結果) に詳細に記載されている。 ポイントを説明すると、

- ①炉内温度は460℃で、原料を投入開始すると360℃まで急低下。
- ②原料を投入しながらの熱分解時間は13時間。温度は360℃から徐々に上がり400℃に上昇する。
- ③原料投入を停止して、炉内物質を焼き締めして(4 時間かけて、400℃から460℃まで上げる)熱分解を進める。
- ④撹拌を停止して、炉内残存物質(チャーなど)を1時間にわたって排出する。

【コメント】

先駆的技術であり、多くの熱分解技術開発企業のお手本になったものと考えられる。

おわりに

本リポートの特許調査は漏れのない完全なものではなく、また特許明細書の読み込みも十分ではないが ¹⁹、公表資料では窺うことのできない特許技術を新たに知ることができた。特に、Plastic Energy、Mura Technology、BlueAlp については特許からプロセスの全容を推定することができた。また LyondellBasell については、特許により、プロセス (CSTR 2 基シリーズ) と熱分解触媒の選択 (ゼオライト) について新規な情報が得られた。

なお、Pryme については、重要な特許情報が得られたが、特許件数が少なく解析は十分でないと考えられる。

次の下巻「米国などケミカルリサイクル企業 6 社の米国特許と技術」では、OMV (オーストリア)、ExxonMobil (米国・テキサス州 Baytown)、Honeywell UOP (米国・イリノイ州 Chicago)、Alterra Energy (米国・オハイオ州 Akron)、Nexus Circular (米国・ジョージア州 Atlanta)、New Hope Energy/Lummus (米国・テキサス州 Tyler) の6 社と環境エネルギー (日本)の米国特許技術を紹介する。

¹⁹ より具体的調査目的に応じて、主要企業 12 社に限らない広い調査、漏れのない完全な調査、各分野の専門技術者による明細書の綿密な解析が必要になるだろう。そして、それによって熱分解法 CR 技術のさらなる特許情報が得られるだろう。

謝辞

知財面から貴重なアドバイスとコメントをいただいた旭化成知的財産部の糸井陽平 氏に深く感謝いたします。

参考文献

(1) \sim (4) は ARC リポート:

https://arc.asahi-kasei.co.jp/report/arc_report/#dropdown-01

- (1)は府川伊三郎、下田晃義、(2)~(4)は府川伊三郎
- (1) ケミカルリサイクルの最新動向(2023 年 1 月~2024 年 3 月)2024 年 5 月 https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1069.pdf
- (2)世界で建設が進むケミカルリサイクルプラントの動向 2023 年 7 月 https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1063.pdf
- (3) 2030 年の日本のプラスチック(リサイクルとバイオマスプラスチック)2023 年 4 月 https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1062.pdf
- (4)プラスチックのケミカルリサイクルとその技術開発(上)、(下)2020年5月 https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1046.pdf https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1047.pdf
- (5) 府川伊三郎「プラスチックリサイクル (MR&CR) の技術と産業化」PETROTECH (石油学会情報誌) 2025 年 4 月号 (第 48 巻) 191-203 頁
- (6) 府川伊三郎 「触媒を利用したプラスチックケミカルリサイクルの開発・工業化の動 向」 触媒 Vol. 65 No. 2 120 頁 (2023)
- (7)福島正明、伊部英紀、若井慶治、杉山英一、安部裕宣、呉倍莉、北川希代彦、鶴賀重徳、志村勝美、小野栄一「外熱式ロータリーキルンを使用した容器包装廃プラスチックの熱分解技術の開発」廃棄物資源循環学会論文誌, Vol. 22, No. 2, pp. 114-126, 2011

https://www.jstage.jst.go.jp/article/jjsmcwm/22/2/22_2_114/_pdf/-char/ja

<本リポートのキーワード>

プラスチックケミカルリサイクル、米国特許、熱分解プロセスと装置、PE、PP、PS、混合廃プラの熱分解、熱分解油メーカー

(注) 本リポートは、ARC の WEB サイト (https://arc.asahi-kasei.co.jp/) から 検索できます。

このリポートの担当

シニアリサーチャー 府川 伊三郎

お問い合わせ先:03-6699-3095

E-mail: fukawa.ig@om.asahi-kasei.co.jp